Universal Algorithm for Online Trading Based on the Method of Calibration
نویسندگان
چکیده
We present a universal algorithm for online trading in Stock Market which performs asymptotically at least as good as any stationary trading strategy that computes the investment at each step using a fixed function of the side information that belongs to a given RKHS (Reproducing Kernel Hilbert Space). Using a universal kernel, we extend this result for any continuous stationary strategy. In this learning process, a trader rationally chooses his gambles using predictions made by a randomized well-calibrated algorithm. Our strategy is based on Dawid’s notion of calibration with more general checking rules and on some modification of Kakade and Foster’s randomized rounding algorithm for computing the well-calibrated forecasts. We combine the method of randomized calibration with Vovk’s method of defensive forecasting in RKHS. Unlike the statistical theory, no stochastic assumptions are made about the stock prices. Our empirical results on historical markets provide strong evidence that this type of technical trading can “beat the market” if transaction costs are ignored.
منابع مشابه
Universal Algorithm for Trading in Stock Market Based on the Method of Calibration
We present a universal method for algorithmic trading in Stock Market which performs asymptotically at least as well as any stationary trading strategy that computes the investment at each step using a continuous function of the side information. In the process of the game, a trader makes decisions using predictions computed by a randomized well-calibrated algorithm. We use Dawid’s notion of ca...
متن کاملCalibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملAn Optimized Online Secondary Path Modeling Method for Single-Channel Feedback ANC Systems
This paper proposes a new method for online secondary path modeling in feedback active noise control (ANC) systems. In practical cases, the secondary path is usually time-varying. For these cases, online modeling of secondary path is required to ensure convergence of the system. In literature the secondary path estimation is usually performed offline, prior to online modeling, where in the prop...
متن کاملModel Calibration and Automated Trading Agent for Euro Futures
We explored the application of a machine learning method, Logitboost, to automatically calibrate a trading model using different versions of the same technical analysis indicators. This approach takes advantage of boosting’s feature selection capability to select an optimal combination of technical indicators and design a new set of trading rules. We tested this approach with high frequency dat...
متن کاملRanking the Trading Symbols of the Largest Companies Listed in the Tehran Stock Exchange Based on the Probability of Informed Trade Criteria
I n this paper, trading symbols of the 30 largest companies listed in the Tehran Stock Exchange (TSE) were ranked based on the asymmetry information risk. Using the Ersan and Alici (2016) modified clustering algorithm (EA), we estimated the probability of informed trading (PIN) to measure the asymmetry information among traders for each trading symbol and trading day through two-year...
متن کامل